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RELATIONSHIPS AMONG THE AUSTRALO-PAPUAN PARROTS,
LORIKEETS, AND COCKATOOS (AVES: PSITTACIFORMES):

PROTEIN EVIDENCE!
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Abstract. Allozyme variation at 21 presumptive protein loci was examined by electro-
phoresis and used to assess relationships among Australo-Papuan parrots, lorikeets and
cockatoos. Hypotheses of relationships were generated from the data by phenetic and cla-
distic analyses. The results, when taken into account with other biochemical, chromosomal
and morphological data, demonstrate that cockatoos form a monophyletic lineage distant
from the other Australo-Papuan parrots and lorikeets. The lorikeets are also monophyletic,
but are clustered among other parrots. A core of Australian broad-tailed (platycercine) parrots
is defined by the rosellas and ringnecks (Platycercus, Barnardius), Bluebonnet (Northiella),
Red-capped Parrot (Purpureicephalus), Swift Parrot (Lathamus) and grass parrots (Psepho-
tus). New Guinean Psittacellg also appears to be a member of this assemblage, to which the
polytelitine parrots (4listerus-Polytelis) may be linked as well. Other “conventional” platy-
cercine parrots—the Ground Parrot (Pezoporus), Budgerigar (Melopsittacus), Red-fronted
Parakeet (Cyanoramphus), and Blue-winged and Bourke’s Parrots (Neophema)—are still
more distant and of disparate affinity; the two latter species are polyphyletic among the
platycercines. Of psittacine parrots, Eclectus (Eclectus) and Red-cheeked Parrots (Geoffroyus)
are closely related but their links to other psittacine genera are not clear. Similarly, the
relationships of the fig-parrots (Cyclopsitta), pygmy-parrots (Micropsitta), lovebirds (Aga-
pornis) and ring-necked parakeets (Psittacula) are ambiguous. Biogeographical implications
of these results are canvassed in the discussion.

Key words:  Parrots; protein electrophoresis; Psittacidae; systematics; Australo-Papuan.

INTRODUCTION

The order Psittaciformes comprises some 330-
350 species of parrots, lorikeets and cockatoos
which occur naturally in Central and South
America, Australasia and the South Pacific, Af-
rica and southern Asia. There are two major ra-
diations, one in Australasia and the other in South
America. Although the order is well-defined
morphologically, the primary evolutionary lin-
eages within it are not so clear-cut (cf. Glenny
1957, Sibley 1960, Brereton 1963, Boetticher
1964, Sibley and Ahlquist 1972, Smith 1975,
Homberger 1980). Two discrete assemblages have
been recognized in all studies: the cockatoos and

! Received 28 June 1990. Final acceptance 6 No-
vember 1990.

brush-tongued lorikeets, both of which are con-
fined to the Australasian and South Pacific
regions. The arine parrots, comprising the entire
New World complement, also appear to form a
monophyletic radiation, judged by their wide
biochemical distance from other parrots (Mai-
nardi 1962, Gysels 1964) and their several unique
pigmentary, ontogenetic and copulatory traits
(Smith 1975).

Most controversy centers on the only other
large group, the Australasian seed-eating psitta-
cine parrots. Up to eight tribes and subfamilies
have been distinguished among them (Smith
1975, Homberger 1980), and there is consider-
able dispute over their composition and rela-
tionships to the cockatoos and lorikeets (see Smith
1975 and Table 1 this study). Towards resolving
some of these questions, we employed multilocus
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protein electrophoresis to examine relationships
among 36 species of Psittaciformes, covering six
of the tribes recognized by Smith (1975). The
survey is limited to the Australasian region, and
focussed on the principal loriine and psittacine
assemblages.

MATERIALS AND METHODS

Protein electrophoresis was performed on 80 in-
dividuals of 36 species (Table 2) representing 16
of the 22 genera of Australo-Papuan psittacine
parrots, seven of the 10 genera of lorikeets, and
two of the five genera of cockatoos (Condon 1975,
Beehler and Finch 1985), as well as one Pacific
species (Norfolk Island Red-fronted Parakeet,
Cyanoramphus) and two Afro-Asian psittacine
genera (Psittacula, Agapornis). Locality data for
the material collected are available from the au-
thors on request.

Electrophoresis was carried out on liver and
breast muscle samples which had been stored in
liquid nitrogen. Separate homogenates of the two
tissues were prepared by grinding a cubic milli-
meter of each in 300 ul buffer (0.1 M Tris, 1.0
mM EDTA, 0.5 ul/ml 2-mercaptoethanol, 0.05
mM NADP; pH 7.0). The homogenates were
then spun in an Eppendorf centrifuge for 3 min
and the supernatant screened for 25 enzyme sys-
tems representing 32 presumptive loci (Table 3).

Enzymes were stained according to the recipes
in Harris and Hopkinson (1976) except GOT
(Table 3), for which the procedure of Shaw and
Prasad (1970) was followed. All systems were run
in a cellulose acetate matrix on a paper support
(Cellogel, Chemetron, Italy). Where two loci rep-
resented a single enzyme, the most anodal was
designated — 1, and the other —2. Individual al-
leles were given alphabetical designations in se-
quence from the anode, beginning with “a.”

Of the 32 loci screened, the following 10 were
excluded from analysis because they could not
be scored consistently across all species: GPT,
GLUD, TPI, ACON-1, ACON-2, EST-1, MDH-
2, GDA, NP, and PGM-2. Variation at LDH-1
and LDH-2 could not be distinguished unam-
biguously because of differential expression of
the polymer bands. Accordingly, their variation
was scored on pattern alone and treated as a
single locus.

From allelic frequencies at the 21 loci remain-
ing (Table 2), Rogers’ (1972) and Nei’s (1978)
genetic distances were calculated between taxa
(Table 4). UPGMA (Sneath and Sokal 1972) and

TABLE 1.

amined in the present study.
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Recent classifications of the genera ex-

Homberger 1980 Smith 1975 Peters 1937
Cacatuinae® Platycercinae Kakatoeinae®
Cacatuini
Psittacinae Platycercinae Psittacinae
Platycercini Platycercini
Melopsittacus Melopsittacus Melopsittacus
Neophema Neophema Neophema
Psephotus Psephotus Psephotus
Northiella Northiella Northiella
Purpurei- Purpurei- Purpureiceph-
cephalus cephalus alus
Platycercus Platycercus Platycercus
Barnardius Barnadius Barnardius
Lathamus Lathamus
Cyanoramphus  Cyanoramphus  Cyanoramphus
Pezoporus Pezoporus
Psittacinae Loriinae Psittacinae
Psittaculini Psittaculini
Geoffroyus Geoffroyus Geoffroyus
Eclectus Eclectus Eclectus
Psittacella Psittacella
Alisterus Alisterus Alisterus
Polytelis Polytelis Polytelis
Agapornis Agapornis Agapornis
Psittacula Psittacula Psittacula
Loriinae® Loriinae Loriinae®
Loriini®
incl. Lathamus
Cyclopsitta
Not examined Loriinae not recognized
Psittaculi-
rostrini
Cyclopsitta
Not examined Loriinae Micropsittinae
Micropsittini
Micropsitta Micropsitta

= Includes the 2 genera listed under Cacatuidae in Table 2.
b Includes the 7 genera listed under Loriidae in Table 2.

distance-Wagner (Farris 1972, Swofford 1981)
dendrograms were then constructed with the
BIOSYS-1 program (Swofford and Selander
1981). The distance-Wagner dendrogram was
rooted by both mid-point and out-group pro-
cedures, the cockatoos being used as the out-
group for psittacine and loriine lineages because
of the morphological (Smith 1975, Homberger
1980), biochemical (Adams et al. 1984, Ovenden
et al. 1987) and chromosomal (Christidis et al.,
in press) evidence that they are a distinctive sister
lineage of the other Psittaciformes.

A cladistic analysis was also performed by
treating the loci as characters and their constit-
uent alleles as character states. Where loci were
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TABLE 3. Enzymes examined, buffers used, and tissue distribution of each enzyme.

Enzyme Running Running
(E.C. No.) Abbreviation  No. of loci Tissue buffer* time (hr)*

Aconitase ACON 2 Liver, F 3
4.2.1.3) muscle

Adenylate kinase AK 1 Muscle A 3
(2.7.4.3)

Aldolase ALD 1 Muscle D 3
(4.1.2.13)

Creatine kinase CK 2 Muscle A 3
(2.7.3.2)

Enolase ENOL 1 Liver A 3
(4.2.1.11)

Esterasec EST 2 Muscle A 1.5
(3.1.1.1)

Fumerase FUM 1 Liver F 2.5
(4.2.1.2)

General protein? GP 1 Muscle A 3

Glucose-phosphate isomerase GPI 1 Liver E 3
(5.3.1.9)

Glutamate dehydrogenase GLUD 1 Muscle A 3
(1.4.1.3)

Glutamate oxaloacetate transaminase GOT 2 Liver F 3
(2.6.1.1)

Glutamate pyruvate transaminase GPT 1 Liver F 2.5
(2.6.1.2)

Glyceraldehyde-3-phosphate dehydrogenase GA3PD 1 Liver D 3
(1.2.1.12)

Glycerophosphate dehydrogenase GPD 1 Liver F 3
(1.1.1.8)

Guanine deaminase GDA 1 Liver C 1
(3.5.4.3)

Isocitrate dehydrogenase IDH 2 Liver F 3
(1.1.1.42)

Lactate dehydrogenase LDH 2 Muscle A,D 3
(1.1.1.27)

Malate dehydrogenase MDH 2 Muscle A 1.5
(1.1.37)

Mannose phosphate isomerase MP1 1 Muscle C 1.5
(5.3.1.8)

Phosphoglucomutase PGM 2 Liver A 3
(2.7.5.1)

6-Phosphogluconate dehydrogenase 6PGD 1 Liver C 2.5
(1.1.1.49)

Phosphoglycerate kinase PGK 1 Liver A 3
(2.7.23)

Purine nucleoside phosphorylase NP 1 Liver F 1.5
(2.4.2.1)

Pyruvate kinase PK 1 Muscle B 2
(2.7.1.40)

Triose-phoshpate isomerase TPI 1 Liver D 3
(5.3.1.1)

2= A =50 mM TEM, B = 15 mM TEB, C = 50 mM TEM + NADP, D = 50 mM TEM + NAD, E = 25 mM TEB, F = 0.
for 1 liter of above buffers. A: 6.06 g Tris, 1.86 g Na EDTA, 0.20 g anhydrous MgCl, pH to 7.8 with Maleic acid. B: 1.82
0.20 g anhydrous MgCl, pH to 8.0 with boric acid. C: as for A but add 10 mg NADP. D: as for A but add 10 mg NAD.
EDTA, 0.20 g anhydrous MgCl, pH to 8.0 with boric acid. F: 12.11 g Tris, pH to 7.8 with citric acid.

> At 7 mA per 12 cm gel (except B and E buffers; 5 mA).

< By method A in Harris & Hopkinson (1976) with 4-methyl-umbelliferyl-acetate.

< Stained with amido black.

1 M Tris-citrate. Recipes
g Tris, 1.86 g Na EDTA,
E: 3.06 g Tris, 1.86 g Na
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polymorphic within a species, the allele in higher
frequency was designated as the state for the tax-
on. Alternate alleles were equal in frequency in
seven instances. Where one or both of the alleles
were autapomorphic, an autapomorph was ex-
cluded because this would not affect cladistic
analysis; where they were not, we made a con-
servative decision to choose as the state for the
taxa concerned that allele which was most fre-
quent and widespread in other parrots.

The data for cladistic analysis were then en-
tered as unordered, without weighting, into the
PAUP program (Swofford 1985) which con-
structs phylogenies according to the principle of
maximum parsimony. Mid-point and out-group
procedures using the cockatoos were employed
again to root the trees. To reduce arbitrary res-
olution of polychotomies as distinct trees, taxa
which shared identical allelic constitutions or dif-
fered only by autapomorphies were excluded
(Swofford 1985). Those excluded from this anal-
ysis are asterisked in Table 2. Also excluded, to
improve the efficiency of the program run, were
the following loci in which variation was limited
to a single genus or species: GA3PD, FUM-1,
MDH-1 and ALD. Because many (50) equally
parsimonious trees were produced, consensus
trees were constructed with the ““strict” method
(Rohlf 1982).

RESULTS

Phenetic analysis of genetic distance data. Of the
21 loci assessed, none were monomorphic across
the range of species examined (Table 2). Rogers’
(1972) and Nei’s (1978) genetic distances were
correlated throughout (Table 4); accordingly, only
the latter are evaluated below as they are the
most commonly used (Avise and Aquadro 1982).

Genetic distances were greatest between the
cockatoos and the remaining parrots, at values
ranging between 0.80 to 1.65. Within cockatoos
and parrots, distances among morphologically
well-separated genera ranged around 0.40 or
higher, similar to the distance between lorikeets
and other parrots. There were, nevertheless, ex-
ceptions. The seven genera of lorikeets were
themselves very close, being separated by genetic
distances of only 0 to 0.06. Moreover, other gen-
era of Australian broad-tailed parrots (Platycer-
cinae) were separated by distances of 0.20 or less:
Platycercus, Barnardius, Northiella, Lathamus,
Purpureicephalus, and Psephotus. Of these,
Platycercus and Barnardius were closest with a

Nei D of only 0.04. At distances ranging from
0.26 to 0.45, the New Guinean tiger-parrots
(Psittacella) were also close to this assemblage.
Other slight intergenetic distances were recorded
between the polytelitine king parrots, Polytelis
and Alisterus, at 0.05, and between the “typical”
palaeotropic parrots, Eclectus and Geoffroyus, at
0.29. Conversely, the two species of platycercine
grass parrot, Neophema bourkii and N. chryso-
stoma, differed by 0.55.

UPGMA phenograms based on Nei’s (1978)
and Rogers’ (1972) measures were identical but
with one exception. Nei’s D clustered the Blue-
winged Parrot (N. chrysostoma) with the fig-par-
rots (Cyclopsitta), pygmy-parrots (Micropsitta)
and lorikeets, while Rogers’ D grouped it with
the Red-fronted Parakeet (Cyanoramphus) near
the Australian broad-tailed assemblage (Platy-
cercus to Psephotus). The Rogers based pheno-
gram had a higher cophenetic correlation 0f0.921
compared with 0.893 for the Nei phenogram.

Accordingly, the phenogram based on Rogers’
(1972) D is depicted in Figure 1. In it, the major
dichotomy is between the cockatoos and other
parrots. The two main cacatuine lineages, the
black cockatoos (Calyptorhynchus) and white and
pink cockatoos (Cacatua) are also well differ-
entiated. The first taxon split off among the par-
rots themselves is Bourke’s Parrot, Neophema
bourkii. The next dichotomy divides the re-
maining parrots into two major assemblages. One
includes all lorikeets, and the fig- and pygmy-
parrots (Cyclopsitta, Micropsitta) as sister lin-
eages. The Australian Budgerigar (Melopsittacus)
and African lovebirds (4gapornis) are also linked
distantly to this group. The other major assem-
blage comprises two principal clusters. One in-
cludes the “typical” palaeotropic parrots: Geof-
froyus (Red-cheeked and Blue-collared Parrots),
Eclectus and Psittacula (Asian ring-necked par-
akeets). The second comprises the polytelitine
king parrots (Polytelis, Alisterus) and core mem-
bers of the Australian platycercines (Crimson
Rosella, Platycercus, to Red-rumped Parrot, Pse-
photus). Linked to them are the Red-fronted Par-
akeet (Cyanoramphus), Blue-winged Parrot
(Neophema chrysostoma), Ground Parrot (Pe-
zoporus) and New Guinean tiger-parrots (Psit-
tacella).

Phylogenetic analysis of genetic distance data.
Both midpoint and outgroup (Fig. 2) rooted dis-
tance-Wagner trees had identical topologies and
lengths (4.668) with cophenetic correlations of
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FIGURE 1.
distance measure.

0.906. The outlying lineages among the parrots
are the polytelitine king parrots and Cyanoram-
phus. At the next dichotomy, the core members
of the Australian broad-tailed parrots, including
the New Guinean tiger-parrots, are clustered on
one side away from the remaining parrots and
lorikeets. Geoffroyus and Eclectus are again clus-
tered together but distant from Psittacula (cf. Fig.
1).

Phylogenetic analysis of allelic states. PAUP
analysis with either midpoint or out-group root-
ing produced 50 equally parsimonious trees each
with a length of 95 steps and a consistency index
of 0.821. A “strict” consensus tree calculated
from them is depicted in Figure 3a. Two major
clades are evident. The first comprises the fig-
parrots and the palaeotropic parrots, Eclectus and
Geoffroyus, the latter two as sister taxa. The sec-
ond clade is subdivided into three lineages: (1)
the polytelitine king parrots (Alisterus- Polytelis),
(2) most core members of the Australian broad-

i N
0.16 0.08 0.00

UPGMA phenogram for representative Australo-Papuan Psittaciformes based on Rogers’ (1972)

tailed parrots (Platycercus, Barnardius, Purpu-
reicephalus, Northiella and Lathamus), and (3)
the Red-rumped Parrot (Psephotus). Further-
more, 46 of the initial 50 trees linked the New
Guinean tiger-parrots (Psittacella) and Red-
fronted Parrakeet (Cyanoramphus) with the Alis-
terus-Platycercus-Psephotus clade (Fig. 3b).

DISCUSSION

Concordance of lineages among the algorithms.
The many discrepancies in the positions of taxa
among UPGMA, distance-Wagner and PAUP
analyses are due to differing assumptions implicit
in these algorithms. In the UPGMA computa-
tion (Fig. 1), which assumes a constant rate of
evolution among lineages, Bourke’s Parrot is sep-
arated as a sister group to the remaining parrots.
Where differing rates of protein change are taken
into account, as in the distance-Wagner proce-
dure (Fig. 2), Bourke’s Parrot clusters with other
parrots. Moreover, the comparatively low num-
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FIGURE 2. Distance Wagner tree for representative Australo-Papuan Psittaciformes based on Rogers’ (1972)

distance measure, rooted by the cacatuines (cockatoos).

ber of resolved loci may exaggerate inter-locus
variance in estimated genetic distances, thereby
magnifying apparent heterogeneity in rates of
change. In a similar study on passerines, Chris-
tidis and Schodde (in press) suggested that con-
fidence could be placed only on assemblages that
are grouped consistently by both genetic distance
and allelic state data. Accordingly, the following
conclusions may be drawn from the data.

(1) The cockatoos form a monophyletic lineage
distant from all other Australo-Papuan psitta-
cine parrots.

(2) The lorikeets also form a monophyletic lin-
eage but one that is much more close-knit than
the cockatoos and which may fall within the Aus-
tralo-Papuan psittacid assemblage.

(3) A core of Australian broad-tailed (platy-
cercine) parrots is defined by the rosellas and

ringnecks (Platycercus, Barnardius), Bluebonnet
(Northiella), Red-capped Parrot (Purpureicepha-
lus), Swift Parrot (Lathamus) and grass parrots
(Psephotus). New Guinean Psittacella is also a
member of this assemblage.

(4) Other conventional members of the platy-
cercines—the Ground Parrot (Pezoporus), Bud-
gerigar (Melopsittacus), Red-fronted Parakeet
(Cyanoramphus), Blue-winged and Bourke’s
Parrots (Neophema)—are much more distant and
of disparate affinity in their allozymes.

(5) The polytelitine parrots (Alisterus-Polyte-
lis) are a sister group of the platycercine parrots.

(6) The Eclectus (Eclectus) and Red-cheeked
and Blue-collared Parrots (Geoffroyus) are the
only palaeotropic genera to cluster consistently.
The fig-parrots (Cyclopsitta) may also be linked
to them.
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FIGURE 3. a) Strict consensus tree for representative Australo-Papuan Psittaciformes derived from PAUP
analysis of the electromorphs using cacatuines as the outgroup. b) relationships within playtycercine assemblage
of 3a when 4 outlying PAUP trees are excluded from the consensus tree.

(7) The pygmy-parrots (Micropsitta) and the
Afro-Asian genera Psittacula and Agapornis have
no obvious links with other taxa screened here.

Concordance of lineages with other biochemi-
cal, chromosomal and morphological data. Com-
parison of these results with other recent protein
(Adams et al. 1984, Ovenden et al. 1987) and
chromosomal (Van Dongen and De Boer 1984,
Schmutz and Prus 1987, Christidis et al., in press)
studies, and with the contemporary morpholog-
ical reviews of Smith (1975) and Homberger
(1980), sheds further light on relationships among
the Australo-Papuan Psittaciformes (cf. Table 1).

Adams et al. (1984) also concluded that the
cockatoos are a distinct lineage among the order,
distant from alt other groups in the Australo-
Papuan region. There are no links with the platy-
cercine broadtails (cf. Smith 1975). Genetic dis-
tances between major lineages of the cockatoos
are as great as between tribal groupings in other
parrots, suggesting, by implication in the dis-
tance-Wagner analysis (Fig. 2), that the lineages

are ancient rather than rapidly evolving in their
alleles. Karyotypes further stress the schism be-
tween the cockatoos (represented by Cacatua,
Leptolophus = Nymphicus and Calyptorhynchus)
and other parrots. Whereas nearly all parrots and
the the lorikeets have a diploid complement of
60-72 chromosomes, including usually five to
seven pairs of bi-armed macrochromosomes, the
cockatoos have a higher diploid number (72-80)
composed largely of single-armed elements
(Christidis et al., in press). When taken into ac-
count with the many morphological and behav-
ioral differences between the cockatoos and other
parrots (Smith 1975, Homberger 1980, Adams
et al. 1984), these data lend support for recog-
nizing the cockatoos as a family.

The lorikeets also cluster as a monophyletic
group on morphological and behavioral char-
acters (Smith 1975, Homberger 1980) and are
linked with the psittacine parrot assemblage on
karyotype morphology (Christidis et al., in press).
Although none of these studies clarify their clos-
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Calyptorhynchus

_H
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Purpureicephalus
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Cyanoramphus
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FIGURE 4. Strict consensus tree for Australian Psittaciformes. Computed from the data of Ovenden (1984),

using PAUP with mid-point rooting.

est relatives, the lorikeets were perceived by Im-
melmann (1966) and Holyoak (1973) as spring-
ing from the Australo-Papuan platycercine
parrots. Indeed, from a single UPGMA com-
putation, Ovenden et al. (1987) reported that
Platycercus itself was not a member of the “broad-
tail” assemblage but aligned with the lorikeet
Glossopsitta instead. Such a relationship is so at
variance with all other findings, including ours,
that we reanalysed Ovenden’s (1984) raw elec-
trophoretic data with the PAUP procedure.
Rooted by the mid-point method, it produced
17 equally parsimonious trees (length 45.0, con-
sistency index 0.821), none of which associated
Platycercus with Glossopsitta. From them a
“strict” consensus tree was derived and is de-
picted in Figure 4. In it, Platycercus is aligned
with other broad-tailed parrots (Barnardius, Pse-
photus, etc.), albeit as a distinct sister lineage,
while Glossopsitta is grouped with the cockatoos.
Obviously the single UPGMA phenogram of
Ovenden et al. (1987) does not represent the phy-
logenetic position of Platycercus accurately.

Among the remaining Psittacidae, other stud-
ies have singled out the same Australian platy-
cercine cluster as here, but with differing com-
position and internal relationships (cf. Table 1).
There is consensus only over the inclusion of
Platycercus, Barnardius, Purpureicephalus, Nor-
thiella and Psephotus. Moreover, our protein data
corroborate the inclusion of the Swift Parrot (La-
thamus) in this assemblage. The morphological
similarities between Lathamus and the lorikeets,
including nectar feeding, are evidently conver-
gent (Smith 1975, Homberger 1980).

Several other genera conventionally included
among the platycercines are placed ambiguously
or excluded by our study. They are the Red-
fronted Parakeet (Cyanoramphus), Ground Par-

rot (Pezoporus), Budgerigar (Melopsittacus) and
Bourke’s and Blue-winged Parrots (Neophema)
cf. Table 1. If these genera are broadtails, then
they are widely divergent elements, as is evident
also in their morphology. Unlike other platycer-
cines which have a type A-2 carotid formula,
Melopsittacus and Neophema possess the ances-
tral type A-1 (Glenny 1957). Moreover, Pezo-
porus and Melopsittacus lack the characteristic
platycercine nape spot. The great genetic distance
between Neophema bourkii and N. chrysostoma,
and their disparate separation in all algorithmic
analyses (Figs. 1, 2, 3a), implies that they are
generically distinct. This result corroborates the
morphological and behavioral conclusions of
Immelmann (1966) and Homberger (1980).

Two other lineages linked here to the Austra-
lian platycercines are not corroborated in con-
temporary morphological studies. They are New
Guinean Psittacella and the Australian polyteli-
tine parrots, Alisterus and Polytelis. Psittacella
has only been reviewed recently by Smith (1975)
who no doubt included it among psittaculine par-
rots because of its stout, short-tailed form and
lack of a platycercine wing stripe and nape spot.
Nevertheless, Psittacella has the pale grey platy-
cercine bill and the barred plumage, colored rump
and blue cheeks (P. picta) found in some broad-
tailed parrots; its undertail coverts are also red,
contrasting with the belly as in Platycercus, Pur-
pureicephalus, Northiella and Psephotus.

The polytelitine parrots have been grouped
consistently with palaeotropic psittacine or psit-
taculine parrots by all current morphological re-
views except those of Thompson (1899) and
Verheyen (1956) which linked them, as here, to
the platycercines. Smith (1975) and Homberger
(1980) grouped the polytelitines with Geoffroyus,
Eclectus, Psittacula and Agapornis in the tribe
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Psittaculini. Our data corroborate a close rela-
tionship between Geoffroyus and Eclectus but
suggest, however, that the Psittaculini are poly-
phyletic. This is reflected in chromosomal data
(Christidis et al., in press) which reveal that Aga-
pornis, Psittacula and Alisterus have significantly
different karyotypes. The morphological and be-
havioral characters supporting the monophyly of
the Psittaculini need to be examined carefully to
determine their nature, whether convergent, an-
cestral or derived. Certainly the phylogenetic sig-
nificance of the carotenoid bill, which apparently
unites the Psittaculini (Smith 1975), has to be
re-assessed as it is also present in most lorikeets.

Biogeographical and phylogenetic correlations.
It is likely that the primary lineages of Australo-
Papuan parrots and cockatoos arose on the Aus-
tralian continental plate or were co-inherited from
Gondwana (Cracraft 1973, Smith 1975, Rich
1975), but without necessarily any “‘immigra-
tion.” Cockatoos, lorikeets and broad-tailed
platycercine parrots are the dominant groups and
all three are centered today in the Australo-Pap-
uan region. The cockatoos are probably one of
the oldest lineages of the order. The genera of
lorikeets, in contrast, are little differentiated and
probably radiated recently. The three in Austra-
lia— Trichoglossus, Psitteuteles and Glossopsit-
ta—have identical allelic constitutions in pro-
teins scored (Table 2). They could be considered
derivatives of a single lineage which entered Aus-
tralia only recently from New Guinea. This is
unlikely to have happened before Miocene-Oli-
gocene times, 20-30 million years BP, because
significant New Guinean land forms cut off from
the Australian continental plate by the Aure
trough had not developed before then (Doutch
1972, Dow 1977, Pieters 1982).

Concerning Psittacella, the occurrence of this
evident platycercine with ancestral morpholog-
ical traits (type A-1 carotid formula, barred
plumage and no wing bar or nape spot) in the
montane rainforests of New Guinea is signifi-
cant. These forests and their vicariant biotas along
the east coast of Australia hold a “Tumbunan”
avifauna that appears to comprise the surviving
elements of the Australian Tertiary rainforest and
representatives of ancestral stocks from which
many arid-adapted taxa have been derived
(Schodde and Calaby 1972).

The center of platycercine diversity is in Aus-
tralia where protein data indicate two successive
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radiations. The first, which may date from the
onset of Tertiary aridity in mid Miocene times
(Kemp 1981), appears to have been continent-
wide and involved the divergence of the ground
parrots (Pezoporus), Budgerigar (Melopsittacus),
Bourke’s Parrot (Neophema = Neopsephotus
bourkii), typical Neophema, the core platycercine
group and the polytelitine parrots from one an-
other. Outlying groups, such as ancestral stocks
of Prosopeia, Cyanoramphus and Eunymphicus
perhaps spread to Pacific islands over the same
period. The second radiation is centered in the
eucalypt-dominated “Bassian” biota of southern
Australia where the elements of the core platy-
cercine group— Platycercus, Barnardius, Purpu-
reicephalus, Northiella, Lathamus and Psepho-
tus—then split from one another. Members of
some of these genera have since adaptively col-
onized the arid “Eyrean” and north Australian
“Torresian” biotas (Barnardius, Northiella, Pse-
photus), but none has returned to the “Tumbu-
nan” rainforests of the east coast.

The genetic distances among the other pre-
sumed Australo-Papuan psittaculines— Eclec-
tus-Geoffroyus, Cyclopsitta (fig-parrots) and Mi-
cropsitta (pygmy-parrots)—and from their
supposed Afro-Asian relatives suggest that they
too many have arisen independently from as yet
unknown ancestral stocks in the Australian re-
gion. Their relationships are among the largest
gaps still to be resolved in the phylogeny of the
Psittaciformes.
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